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ABSTRACT

At the heart of many data-intensive applications is the prob-
lem of quickly and accurately transforming data into a new
form. Database researchers have long advocated the use
of declarative queries for this process. Yet tools for creat-
ing, managing and understanding the complex queries nec-
essary for data transformation are still too primitive to per-
mit widespread adoption of this approach. We present a
new framework that uses data examples as the basis for un-
derstanding and refining declarative schema mappings. We
identify a small set of intuitive operators for manipulating
examples. These operators permit a user to follow and re-
fine an example by walking through a data source. We show
that our operators are powerful enough both to identify a
large class of schema mappings and to distinguish effectively
between alternative schema mappings. These operators per-
mit a user to quickly and intuitively build and refine complex
data transformation queries that map one data source into
another.

1. INTRODUCTION

The volume of data available online is increasing daily,
but our ability to understand it and transform it for new
purposes has not kept pace. E-commerce and other data-
intensive applications rely on being able to re-use and inte-
grate data from multiple, often legacy sources. To accom-
plish this task, mappings must be created between the data
source (or a set of heterogeneous data sources) and a target
or integrated schema [12, 14]. While we have made impor-
tant advances in our ability to reason about and manage
these mappings, a number of important issues remain.

First, the number of possible, even reasonable, mappings
between two data sources can be enormous. Users are not
able to conceive of all the possible alternatives, and hence
may have difficulty finding the correct mapping for a spe-
cific application. To address this issue, we are developing a
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schema mapping tool, Clio, which systematically considers
and manages alternative mappings [6, 9, 10]. Clio uses rea-
soning about queries (similar to the reasoning used in query
answering and optimization [2]) to create, manage and rank
alternative mappings. However, the final choice of mappings
must necessarily be made by a user who understands the se-
mantics of the target application.

Second, schema mappings are typically complex queries.
Subtle changes to the mapping, for example, changing a join
from an inner join to an outer join, may dramatically change
the target data that results. In other cases, the same change
may have no effect due to constraints that hold on the source
schema. Again, a tool is better able to embody the complex
query and constraint reasoning needed to understand these
subtleties. However, a means of effectively communicating
these subtleties to a user is needed.

Third, the user performing the mapping may not under-
stand the source data or schema fully. Hence, it is important
to provide facilities for both schema and data exploration.
In addition, it is important to leverage the parts of the data
and schema that the user does understand and use these to
maximum advantage in forming the schema mapping.

Fourth, given the complexity of the mappings and the of-
ten subtle differences between alternative mappings, even an
expert user will need help. Specifically, to select a mapping,
the user will need to understand the mapping and under-
stand how a particular mapping differs from other mappings.
Rather than exposing tangled SQL (or even complex QBE
queries) to the user, we believe the best way to achieve such
understanding is to use source data to illustrate the results
of each mapping. If done in an unprincipled way, such an ap-
proach could easily overwhelm the user with data. Hence, we
propose to use carefully selected examples that both illumi-
nate a specific mapping (helping the user to understand the
mapping) and also illustrate any differences from alternative
mappings (helping the user to differentiate mappings).

Finally, data merging queries require the use of complex,
non-associative operators [4, 11]. Reasoning about such op-
erators can be extremely difficult, not only for humans, but
for query management tools as well [1, 5]. Because the op-
erators may not be associative, even managing compositions
of queries can be a difficult task. However, to be scalable to
large schemas, mapping tools must necessarily permit users
to incrementally create, evolve and compose such complex
queries. To address these challenges, we have developed a
mapping representation and a set of mapping operators that
permit the incremental creation and management of large,
complex mappings.



Our previous work on Clio has addressed the first issue
(the generation and management of alternative mappings)
by providing a mapping management and reasoning tool [9].
To address the remaining issues, we build on this foundation
to present a new data-driven framework for understanding
and choosing mappings based on examples. To the best
of our knowledge, ours is the first work that supports the
understanding and verification of the correctness of complex
data transformation queries. Our main contributions are the
following.

o We define a powerful mapping representation that fa-
cilitates the incremental creation and management of
complex mappings over large data sources.

We introduce the concept of a mapping example to
ease the tasks of understanding, selecting, and refining
schema mappings.

We identify a set of operators on mapping examples
and mappings, and provide a formal semantics for each.
We show that our operators provide an appropriate,
easy-to-use abstraction for tackling the schema map-
ping problem.

2. ANILLUSTRATION

The ultimate goal of schema mapping is not to build the
correct query, but to extract the correct data from the source
to populate the target schema. Current data transforma-
tion (ETL - Extract, Transform and Load) tools and query
formation tools focus on building queries or transformation
programs, but provide limited support in verifying that the
derived data set is correct. If a query or transformation s
incomplete or incorrect, there is typically no support for re-
fining and correcting it. The user is expected to have a thor-
ough understanding of the data source and to debug com-
plicated SQL queries or procedural transformation programs
by hand. In Clio, we permit a user to focus on populating
the target with the correct data, rather than on constructing
a correct query. By examining and manipulating carefully
chosen data examples, the user decides what source data
should be combined and transformed, and where in the tar-
get this data should be placed.! In this section, we introduce
our approach by means of a user scenario.

Assume a user wishes to map the data source shown in
Figure 1 to the target relation Kids, shown in Figure 2(c).?
From schematic information, the user may indicate a corre-
spondence between attributes or schema constructs (perhaps
using value correspondences [9] or schema assertions [12]).
In our example, a user has indicated that Children.ID corre-
sponds to Kids.ID, and that Children.name corresponds to
Kids.name. These correspondences are shown by edges v1,
v2 in Figure 2 (a). Clio shows a sample of the data from the
relevant source table(s) (here Children) as shown in Figure 2
(b) along with the result of the current mapping (Figure 2
(c)). This allows the user to verify that Children.IDnot only
looks like Kids.ID at the schema level, but that the values
of Children.ID belong in the Kids.ID attribute in the target.

INote that we are using data examples to help users understand the
extracted, transformed data. This is in contrast to QBE-style ap-
proaches that use examples as an abstraction of the query itself [17].
2To explain our framework, we will use this very simple source schema
which contains only a few tuples. However, our techniques have been
designed specifically to handle the complexity and intricacies of both
large schemas and large data sets [17].

| Children (C)

1D name age mid fid docid
001 Kyle 2 201 202 701
002 Maya 4 203 204 702
003 Eric 5 205 206 703
009 Ben 6 401 402
004 Carmen 10 205 206 703
| Parents (P) [ XmasBox (X) |
D name affiliation | salary give Teceive
201 Anne Safeway 50,000 001 003
202 Paul IBM 60,000 002 004
203 Jill Xerox 65,000 003 002
204 Mike NASA 45,000 004 006
205 Sue MGM 56,000 006 001
206 Joe CISCO 67,000
601 Jacky AMCO
[ PhoneDir (Ph) [ SBPS (S)
D type humber D Tocation Time
201 Home 201-0001 002 364 Spod... MW
202 Work 202-0001 003 112 Lean... MF
202 Cell 202-0002 005 255 Bail... TWF
203 Home 203-0001 009 216 Main... TWF
203 Cell 203-0002 004 112 Lean... MWEF
204 Work 202-0001
205 Work 205-0001
206 Work 206-0001
601 Home 601-0001
701 Cell 701-0001

Figure 1: Source Database for Examples

SOURCE | TARGET Children
Children T
5 ID | name | age| mid]| fid |docid
name 001 | Kyle |2 201 | 202 | 701
age
mid 002 | Maya | 4 203 | 204 | 702
fid Kids 003 Eric | 5 205 | 206 | 703
docid D
name (b)
Parents | affiliation Kids
name contactPh
affiliation BusSchedule ID | name | affiliation| contactPh | -
salary Familylncome
PhoneDir oo1i | Kyle
D
wpe 002 | Maya
number 003 | Eric
sBPS
D

©

Figure 2: A Schema Mapping Example

Next, the user may indicate that Parents.affiliationshould
map to Kids.affiliation (edge v3 of Figure 2 (a)). Since
Kids.affiliation corresponds to a different relation than the
rest of the Kids data that has been mapped, it is not clear
which affiliation value should go with which kid tuple. As-
sume that Clio is aware of two foreign keys, mid and fid,
both referencing Parents.ID. Clio can show the user, using
data, these two ways of associating children with affiliations
in the source. These two options are illustrated with data
examples (Figure 3). If the user has selected the Children’s
tuple for Maya as an example, then the highlighted rows of
Figure 3 can be used to illustrate the differences in these
two scenarios. Because the user is familiar with this specific
example, she quickly realizes that mid and fid are mother ID
and father ID, respectively. She selects the scenario that has
the desired target semantics. For our example, she identifies
Scenario 1, where children are associated with their fathers’
affiliations.

Next, the user decides to populate Kids.contactPh with
source data. The user notices that phone numbers in the
source all appear in the PhoneDir relation, but is unsure
how to associate phone numbers with kids. She therefore
asks Clio to perform a data walk to find associations be-
tween children and phone numbers. In response, Clio pro-
duces several scenarios, of which two are shown in Figure 4.
Scenario 1 associates children with their fathers’ phone num-
bers, and Scenario 2, with mothers’ phone numbers. Again,
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Figure 4: Associating children and phone numbers

both scenarios are illustrated with data. To illustrate the
second alternative, a second copy of the Parents relation
is introduced to indicate that children are being associated
with values in two parent tuples. The user is able to view
and manipulate the illustrations, perhaps asking for differ-
ent example tuples, in order to gain sufficient understanding
of the alternatives to be able to select the one that reflects
her desired semantics. For this example, we assume the user
chooses the second scenario and adds a correspondence from
PhoneDir.number to Kids.contactPh (v4 in Figure 2 (a)).
Now assume that the user wants to populate Kids.Bus-
Schedule. From the source schema, it is not obvious where
to find this data, unless the user knows that the cryptic name
SBPS stands for “School Bus Pickup Schedule”. Hence, our
user may not have enough knowledge of the source to request
a data walk to a specific relation. However, she guesses that
any tuple that records the school bus schedule of a child
might carry the ID of the child. So she chooses an 1D value,
say Maya’s 1D, 002, and asks Clio to chase this value. Clio
locates all occurrences of this values in other relations. Clio
finds that 002 appears in one attribute of SBPS and in two
attributes of XmasBoz. This result is demonstrated using
the Maya example, as shown in Figure 5. The user, perhaps
after looking at the relevant data associated with the value
002 in these new relations, chooses the first scenario as the
right way of associating bus schedules with children. To
complete the mapping, she adds a correspondence v5 from

SBPS.time to Kids. BusSchedule (Figure 2 (a)).

During this process, Clio has maintained and manipulated
a mapping between source and target, and used it to gen-
erate examples. Clio uses input from the user, along with
sophisticated query and constraint reasoning to derive this
mapping. Clio also uses target constraints (provided as part
of the schema or input by the user) as part of mapping cre-
ation. For example, a target constraint may indicate that
every Kid tuple must have an ID value. From this constraint,
Clio would know not to include SBPS or Parent values in
the target if they are not associated with a Children tu-
ple. Using this constraint, and the user choices made in this
example, Clio would derive the following mapping.

create view Kids as

select C.ID as ID, C.name as name, P.affiliation as affil-
iation, D.number as contactPh, S.time as BusSchedule

from Children C

left join Parents P on C.fid = P.ID

left join Parents P2 on C.mid = P2.1D

left join PhoneDir D on C.ID = D.ID

left join SBPS S on C.ID = S.ID

where C.ID is not null;

Notice that we use left outer joins extensively to make sure
that even kids without affiliation, contactPh, or BusSched-
ule are extracted from the source. By showing the result
of the mapping as well as sample source data, Clio allows
the user to fine-tune this mapping. For example, if the user
is interested only in children who have a bus schedule, she
can, upon seeing a null in the BusSchedule column, indicate
that BusSchedule is really a required field. Clio would then
change this left outer join to an inner join.

This simple example illustrates the power of data in sup-
porting the construction of schema mappings, especially when
the source schema is unfamiliar or contains cryptic names.
A simple data browsing facility could easily make the user
feel lost in a jungle of data. To prevent this, we have devel-
oped a framework for showing carefully selected examples
to the user, examples that change as needed in response to
changes in the mapping. The examples are chosen to per-
mit a user both to understand a mapping and to understand
how it differs from alternative mappings. Using examples,
the user can “walk around” inside the database, play with
data, understand how data is organized, and see how to
combine pieces of data meaningfully in the context of the
target schema. The user can walk along paths known to
Clio (a data walk), or actively discover new ways of con-
necting data (a data chase). By following the “tracks” of
the user, Clio gains enough semantic knowledge to compose
the often complex mapping queries. The remainder of the
paper focuses on formalizing this framework. We describe
the major building blocks (mappings and examples) in the
next two sections.

3. MAPPINGS

Tuples in a target relation can often be computed in sev-
eral ways. For instance, tuples in a target relation “Kids”
may be computed differently for children in public schools
and children who are home schooled. Generally, portions
of a target relation are computed by separate queries. The
results of these queries are then combined to form the final
content of the target relation. We define a mapping as a
query on the source schema that produces a subset of a tar-
get relation. Thus, a mapping defines one (out of possibly
many) ways of forming target tuples.
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Figure 5: Chasing Data Values

Mapping construction consists of three activities. The
first activity involves determining where and how source
data should appear in the target. We call this activity de-
termining correspondences. For example, in the target, we
may wish to populate the FamilyIncome field with the sum
of a kid’s parents’ salaries (from the source Parents.Salary
field). During this activity, we determine how source values
should be combined and transformed to make up target val-
ues. The second activity involves determining how source
tuples from different relations should be combined to form
a target tuple. This activity, data linking, determines the
conditions used to join source relations. For example, to as-
sociate children with affiliations, we need to determine first
which parent tuples belong with a child. The third activ-
ity involves determining which of the joined source tuples
should be used in forming a target tuple. We call this ac-
tivity data trimming. For example, a user may not want all
children to appear in the target, but only those under the
age of seven. Similarly, a user may not want to see infor-
mation about a person’s income in the target, unless that
income is associated with a child.

To support mapping creation, we define in this section a

formal notion of mapping that represents the decisions made
in each of the three mapping activities.
Preliminaries Let A be a set of attributes, where for each
A € A there is an associated domain dom(A) of values.
A scheme S is a finite set of attributes. A fuple t on S
is an assignment of values to the attributes of S. For an
attribute A € S, t[A] € dom(A) denotes the value of ¢ on
A. We may denote a tuple using a set of attribute-value
pairs: t = {A1 : v1, A2 : v2,....}. A relation on scheme S is
a named, finite set of tuples on S. When confusion will not
arise, we may use the same symbol for both a relation and its
name. A database is a set of relations over mutually disjoint
schemes where the database schema is the corresponding
set of relation names. We make the common assumption
that the relations in the source database do not contain any
tuples that are null on all attributes, as the way such a
tuple should be reflected in a schema mapping is unclear. A
predicate P over a scheme S maps tuples on S to true or false.
A predicate is strong if it evaluates to false on every tuple
that is null for all attributes in S [4]. A join predicateis a
strong predicate over attributes in two relations. Note that
Jjoin predicates in SQL are strong [4]. A selection predicateis
a predicate over attributes in one relation. We do not require
selection predicates to be strong. Mappings may require
multiple copies of a relation. Without loss of generality,
and with notational simplicity in mind, we assume that if
multiple copies of a relation are required, each copy (and
its attributes) have been given unique names which in turn
may be used unambiguously in predicates.

3.1 Correspondenceto the Target

To begin constructing a mapping, we must know where
data should appear in the target, that is, in what attribute

and also how it should appear. To indicate this we use
value correspondences[9]. A value correspondence is a func-
tion defining how a value (or set of values) from a source
database can be used to form a value in a target relation.
Our previous work has shown that value correspondences are
a natural, intuitive abstraction for users to enter semantic
information about where data should be mapped [9]. Here,
we assume that users (or an automated tool [7]) are able to
provide value correspondences on which to base the mapping
construction.

DerFINITION 3.1. A value correspondence v is a func-
tion over the values of a set of source attributes A', ..., A
that computes a value for target attribute B. So, v : dom(A')x
oo X dom(A¥) = dom(B) U {null}.

ExXaAMPLE 3.2. In the example of Section 2, we showed
several value correspondences, including a simple (identity)
function, viq : Children.ID — Kids.ID, to map values in
Children.ID to values in the target attribute Kids.ID. Other
correspondences might use several source relations or even
several copies of the same source relation. To populate the
target atiribute Kids.Familylncome, we could use the value
correspondence vsqi: Parents.Salary + Parents2.Salary —
Kids. FamilyIncome.

Note that value correspondences are simply functions on
attribute values. They do not indicate which values will
be included in the mapping nor how different values will be
associated. For instance, vsq; does not indicate which tuples
from Parents and Parents2 are to be combined.

3.2 Datalinking

We use query graphs to represent the linkage among source
tuples, that is, how source tuples can be combined correctly
in the context of a target relation [4].

DEFINITION 3.3. A query graph G = (N,E) over a
database schema S is an undirected, connected graph where
N is a subset of the relation names in S. Fach edge e =
(n1,n2) € E is labeled by a conjunction of join predicates on
attributes in the union of the schemes of n1 and nz.

Intuitively, a query graph defines a way of associating tu-
ples from different source relations. The nodes of a query
graph are source relation names. The edges represent join
predicates between pairs of source relations.

ExaMpPLE 3.4. Three example query graphs are shown in
Figure 6. Fach represents one way of linking tuples for the
source database of Figure 1. For graph G, PhoneDir and
Parents tuples are associated if they have common ID val-
ues. Similarly, Parents and Children tuples are associated if

Parents.ID = Children.mid.

Before defining the scope of a mapping, that is, which
source tuples are to be included in the mapping, we must



Children
Children.mid =

Children Children
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Figure 6: Query (Sub)Graphs

consider possible interpretations of a query graph. Clearly,
one interpretation is as a join query. However, to support
the data merging semantics of mappings, we may also want
to interpret a query graph as an outer join query or as a
combination of joins and outer joins. Informally, we will
refer to the set of all possible tuple associations that conform
to a query graph as its data associations. To define this
notion formally, we begin by defining the set of full data
associations.

DEFINITION 3.5. Let G(N, E) be a query graph. Let Ry,
..oy Ry be all the nodes of G, that is, N = {Ru, ..., Rn}. The
set of full data associations of G is defined as F(G) =
op(R1 X ... X Ry) where P is the conjunction of all edge
predicates in G.

Given a query graph G, the full data associations of G can
be computed by an inner join query, based on G. Note that
the join need not be lossless, so there may be tuples from the
source relations that do not contribute to any full data asso-
ciation. Intuitively, a full data association is “full” because
it involves tuples from all nodes of G. In defining mappings,
it may also be useful to consider non-full associations.

DEFINITION 3.6. Let G = (N, E) be a query graph. For
each induced, connected subgraph J = (N, E;) of G, ifd is
a full data association of J, then d padded with nulls on all
attributes in N — Ny is a possible data association of G.
The coverage of d is N, denoted as coverage(d) = Nj.

ExamMpLE 3.7. Consider Query Graph G in Figure 6. The

node set { Children, Parents2} induces graph G1, a connected
subgraph of G. Referencing Figure 1, we see that the tuple t
in Figure 7 is a full data association of G1.
The node set { Children, Parents2, PhoneDir} also induces
a connected subgraph, G2, shown in Figure 6. We can pad
t with nulls to form a possible data association u of Gs.
The new association u is not a full data association of G2
since it does not involve a tuple of PhoneDir. By referencing
the data of Figure 1, we see that the tuple v is a full data
association on Gs.

In the above example, v provides all the information pro-
vided by u and more. Hence, u is made redundant in some
sense by v. Generally, non-full data associations may be
important to include in a mapping if there is no full data
association that contains more information. This idea has
been formalized using the notion of subsumption [16].

DEFINITION 3.8. A tuplet; subsumes a tuple tz if t1 and
t> have the same scheme and t1[A] = t2[A] for all atiributes
A where t2[A] # null. Moreover, t; strictly subsumes &,

if ti # to.

Intuitively, a strictly subsumed tuple is “redundant” since
it repeats information that is already represented by another

Figure 7: Examples of data associations.

tuple. In our example, v strictly subsumes u. The minimum
union operator (defined below) removes such redundancies.

DEFINITION 3.9. The minimum union of two relations
R and Rs, denoted Ri® Rz, is the outer union® of R1 and
Ry with strictly subsumed tuples removed.

ExamMpLE 3.10. Let Ry be the set of full data associations
of G1 and let Ry be the set of full data associations of Gz.
So R1 = Childrent<mia=1p Parents and Ry = Children
Mmid=1p Parents<iip—rpPhoneDir. Then Ri®R> = R».
It is easy to verify that all tuples in Ry, after being padded
with attributes of PhoneDir, are strictly subsumed by tuples
in R2. This would not be true if some parents had no phone
numbers in the data source of Figure 1.

DEFINITION 3.11. Let G be a query graph. Let S(G) be
all the possible data associations of G. Let U(G) be the set
of tuples in S(G) that are sirictly subsumed by another tuple
in S(G). We define D(G), the set of all data associations of
G, as D(G) = S(G) — U(G). A data association is then
a tuple in D(G).

Referring to Definition 3.6, we see that D(G) can be com-
puted by combining full data associations over all induced
and connected subgraphs of GG, using minimum union. That
is, if Ji,...., Jy are all the induced and connected subgraphs
of G, then D(G) = F(J1)®...0F(Jw). Galindo-Legaria calls
D(G) the full disjunction of query graph G [4]. The full
disjunction has been recognized as providing a natural se-
mantics for data merging queries [5, 11].

ExamMpLE 3.12. The set of all induced, connected sub-
graphs of G from Figure 6 is the set of subgraphs induced by
the following sets of nodes:* {C}, {P},{Ph},{S},{C, P},{C,
S}, (P, Ph}, {C, P, PRY, {C, P, S}, {C, P, Ph, S}. The
set of data associations of G, D(G), can be computed as
follows (where p1, p2, and ps are the predicates “C.mid =
P.ID”, “C.ID = S.ID”, and “P.ID = Ph.ID”, respectively).
D(G) = CePRPhBSH(Cr<p, P) &(Crxp, S)B(Pr<yp, Ph)
B(Crdtyp, Py, Ph) &(Crdp, Py, S) B(Crp, Py, Sy, Ph).
In Figure 8, we show the tuples in D(G). Each data associ-
ation is tagged with its coverage. Due to space constraints,
we have removed the Children.docid and SBPS.location at-
tributes since these are not used in the mapping (however,
these attributes are part of the data association).

3.3 DataTrimming

Once a query graph G is established, we preserve all possi-
ble linkages among source tuples by computing D(G). How-
ever, not all tuples of D(G) may be semantically meaningful

3The outer union is the union of R, (padded with nulls on attributes
that are in Ry but not in R;) and R: (padded with nulls on all
attributes that are in Ry but not R3).

*We use the short hand for the relations indicated in Figure 1, with
P standing for Parents2 here.




Children(C Parents(P) PhoneDir(Ph) SBPS(3S)

cover | 1D name age | mid | fid D name affil salary | 1D type number D time
1 CPPhS 002 Maya 4 203 204 203 JilT Xerox 65000 203 Home 203-0001 002 MW
2 CPPhS 002 Maya 4 203 204 203 Jill Xerox 65000 203 Cell 203-0002 002 MW
3 CPPhS 003 Eric 5 205 206 205 Sue MGM 56000 205 Work 205-0001 003 MF
4 CPPhS 004 Carmen 10 205 206 205 Sue MGM 56000 205 Work 205-0001 004 MWF
5 CPPh 001 Kyle 2 201 202 201 Anne Safeway 50000 201 Home 201-0001
6 [eF] 009 Ben 6 401 402 009 TWEF
7 PPh 601 Jacky AMCO 601 Home 601-0001
8 Ph 701 Cell 701-0001
9 s 005 | TWF

Figure 8: The data associations for graph G of Figure 6.

in the context of the target relation. For instance, Row 7
of Figure 8 contains information that is not related to any
children, and hence may not be useful for our target relation
Kids. The goal of data trimming is to specify which data
associations match the semantics of target relation.

Let J = (N, E;) be an induced connected subgraph of
G, and let D(G, J) be the set of data associations in D(G)
whose coverage is Ny. Assuming that no source tuples are
null on all attributes, then for any induced connected sub-
graphs Ji,J> of G, we have D(G,J1) N D(G,Jz) = 0 if
Ji # Jo. That is, if Ji, ..., J,, are all the induced connected
subgraphs of G, then we can partition D(G) into w subsets,
D(G, J1),...,D(G, Ju). Each D(G, J;) is called a category of
D(G). Data associations in some of these categories may all
be too incomplete to include in the mapping. For instance,
in Figure 8, data associations with coverage PPh (Row 7)
are meaningless in the context of the target relation Kids,
since they are not related to any children. Generally, a user
may determine that some categories D(G) (that is, specific
D(G, J;)) must be excluded from the mapping because they
have incomplete coverage.

Alternatively, a user may wish to exclude data associa-
tions that satisfy some selection predicate or other criteria.
For example, a user may wish to exclude children who are
seven or older from the mapping, or even exclude children
whose age is not indicated (that is, whose age is null). Gen-
erally, the user may determine that some data associations
must be excluded from the mapping because they have in-
valid values, that is, the associations fail to satisfy certain
conditions on the values they contain.

In our mapping definition, data associations with incom-
plete coverage or invalid values can both be excluded using
filters as shown by the following example.

ExamMpLE 3.13. In creating a mapping for the Kids tar-
get relation, a user may wish to exclude all target tuples that
have a null Kids.ID. The user may indicale this by specifying
a not-null constraint in the target schema. In the mapping,
we represent this using a target predicate over the target re-
lation Kids: Kids.ID <> null. Alternatively, a user may
indicate that unless a data association involves Children, it
ts not of interest. This choice can be represented by the fol-
lowing source predicate: = (C.ID = null A C.name = null
A C.age = null A C.mid = null A C.fid = null A C.docid
= null). A simpler predicate may be used if one or more
attributes of Children are constrained to be non-null. Note
that these two predicates on Kids and Children are not nec-
essarily equivalent. Finally, a user may also specify con-
straints on source or target values. The following examples
constrain the FamilyIncome attribute of the target to be un-
der $100,000 and the source attribute Age to be under 7.

Kids. FamilyIncome < $100,000 Children.Age < 7

3.4 Puttingit all together: M apping Definition

We outlined how decisions made during each of the three
activities of creating correspondences, data linking and data
trimming can be represented using value correspondences,
query graphs and selection predicates respectively. We com-
bine these three components to build a representation of a
mapping.

DEFINITION 3.14. Let N = {Ri,..., Rn} be a set of source
relation names and T'(B1, ..., By,) be a target relation name.
A mapping from N to T is a four-tuple < G,V,Cg,Cr >
where:

o (G is a connected query graph with node set N;
o V = {v1,...,um} is a set of value correspondences
where each v; : dom(A}) x ... xdom(A},) = dom(B;)U

{null};

o Cs ={pi,...,ps} is a set of selection predicates over
source relations in N; and
o Cr = {pl,...,p4} is a set of selection predicates over

the target relation T'.

The mapping query defined by M is the following.

select *
from ( select vl(A%,...,A}ﬂl) as Bi, ...,
vm (AT, ..., AL ) as Bn
from  D(G)
where pfand ... and pj )
where p! and ... and p!

Intuitively, a mapping defines the relationship between a
target relation and a set of source relations. This relation-
ship is defined using three components. The first component
is the query graph G, which defines how data in the source
relations are to be linked, or “pieced” together, to produce
all data associations. The second component is the set V of
value correspondences, which defines how these data asso-
ciations can be translated into tuples in the target relation.
The final component includes two sets of filters, Cs and Cr,
which define conditions that source and target tuples, re-
spectively, must satisfy. These definitions are illustrated by
the following example.

ExampLE 3.15. Consider the query graph G pf Figure
6. Let V. = {v1,v2,v3,v4,us} be value correspondences for
Kids.ID, Kids.name, Kids.affiliation, Kids.contactPh, and
Kids. BusSchedule, respectively, of the target (Figure 2). Let
v1, U2, Vs, Us be tdentity functions defined on attributes C.ID,
C.name, P.affiliation, and S.time, respectively. Let vy be the
function concat, defined on attributes Ph.type and Ph.number,
with the following signature: concat: String x String —
String. The function concat produces a new string s by con-

catenating its first parameter, “:”, and its second parameter.



Let Cs = {“C.age < 7”}. Let Cp = {“Kids.ID # null” }.
Then (G,V,Cs,Cr) is a mapping. The query defined by this
mapping is the following.

select *
from ( select C.ID as ID, C.name as name,
P.affiliation as affiliation,
concat(Ph.type, Ph.number) as contactPh,
S.time as BusSchedule
from D(G)
where C.age <7 )
where 1D # null

We show in the full version of this paper that this mapping
representation can be used to represent arbitrary combina-
tions of join and outer join queries [17]. The impact of this
result is that we can use this definition to represent and
manipulate a powerful class of mapping queries.

4. MAPPING EXAMPLES

We have designed a mapping representation that supports
the incremental development of mapping queries. We now
consider how to use source data to assist users in construct-
ing these mappings and in verifying that they are semanti-
cally correct. The centerpiece of this technique is the con-
cept of mapping ezxamples.

4.1 Definition of Example

For a mapping M = (G,V,Cs,Cr), let Qur be the map-
ping query defined by M, as in Definition 3.14. Query Qs
is a query over all data associations of G. For a specific
data association d € D(G), we define Q(d) as the result
of the mapping query applied only to {d}. The mapping
&(M) = (G,V,0,0) (with mapping query Qy(az)) is the map-
ping defined by M without any source or target filters.

DEFINITION 4.1. An example e of a mapping M = (G,
V, Cs,Cr) is a pair e = (d,t), where d € D(G), and t =
Qq(ary(d). Ezample e is a positive example if t = Qar(d)
(that is, if d satisfies all the conditions in Cs, and t salisfies
all conditions in Cr ). Otherwise, e is a negative example.

A positive example demonstrates how a set of source tu-
ples are combined together to contribute towards the target
relation. It provides insight into the target tuples a map-
ping will produce. A negative example demonstrates a case
where source tuples are combined correctly (using the valid
join conditions) but fail to make it into the target. A neg-
ative example provides insight into what has been removed
from the target by filter predicates. An illustration is then
any set of examples for a mapping. In Clio, we are interested
only in illustrations that provide a satisfactory showcase of
the behavior of a mapping.

An illustration includes a set of data associations. Data
associations for the mapping described in Example 3.15 are
shown in Figure 9. We use this as a running example for the
rest of this section. Each data association is tagged with a
field that encodes its coverage and that indicates whether
the example it induces is positive or negative.

4.2 Sufficient Illustrations

A sufficient illustration is one that demonstrates all as-
pects of a mapping. We formally define this by considering

how to illustrate each component of the mapping: the query
graph, the filters, and the value correspondences.

Sufficient Illustration of a Query Graph

A query graph defines the data associations of a mapping.
As discussed in Section 3.3, the set of all data associations
defined by query graph G can be partitioned according to
coverage of the data associations. Each connected subgraph
J defines one component of the partition D(G, J) called a
category. It is possible some of these categories are empty
(Section 3.3). To sufficiently illustrate a query graph, an
illustration must include at least one example induced by
a data association from each category of D(G) that is not
empty.

DEFINITION 4.2. Let I be a set of examples of a map-
ping M = (G,V,Cs,Cr). Then I is a sufficient illustra-
tion of the query graph G = (N, E) if it salisfies the
following property. For each induced, connected subgraph
J = (Ny,E;j) of G, if there exists a data association in D(G)
whose coverage is Ny then I contains an example (d,t,) € I
whose coverage is Nj.

ExamMpLE 4.3. The illustration shown in Figure 9 is a
sufficient illustration of query graph shown in Figure 6. No-
tice that if we remove one of the examples with coverage
CPPhRS, it remains sufficient. However, if we remove the
example with coverage PPh, this illustration is no longer
sufficient in regard to the query graph shown in Figure 6,
since it does not illustrate data associations with coverage
PPh. Also notice thal there are no parents in the database
who have children and no phone. Hence, there exists no data
association with coverage CP. For similar reasons, there is
no example with coverage C or CPS.

Sufficient Illustration of Filters
We refine the above definition to develop a sufficient illus-
tration of filters.

DEFINITION 4.4. Let I be a set of examples of mapping
M = (G,V,Cs,Cr) . Then I is a sufficient illustration
of the data trimming predicates Cs and Cr if, for each
induced, connected subgraph J = (N, E;) of G, the follow-
ing conditions hold:

e if there exists a positive example (d, t) where coverage(d) =
Ny, then I contains such a positive example; and

e if there exists a negative example (d, t) where coverage(d) =
Ny, then I contains such a negative example.

Intuitively, we illustrate the filters of a mapping by illus-
trating the effect of the filters from two perspectives. First,
we illustrate the data associations with incomplete coverage
that are eliminated by the filters (Section 3.3); these data
associations do not carry enough semantics to be meaning-
ful in the context of the target. Second, we illustrate data
associations that have enough coverage but fail to satisfy
the filters for other reasons. In this sense, the illustration
provides some insight into the effect of filters in removing
data associations with invalid values (Section 3.3).

Sufficient Illustration of Value Correspondences

We focus on three salient properties of value correspon-
dences to help users understand the correspondence. First,
we want the user to understand how data associations are
being transformed by a correspondence. To illustrate this,



Children(C) Parents(P) PhoneDir(Ph) SBPS(S)
coverage 1D name age  mid 1D affiliation D 0 umber 1D time
C,P,Ph(4) | 001 Kyle 2 201 201 Safeway 201 201-0001

C, S(¥) | 009 Ben 6 401 009 TWF
C,P,Ph,5(4) | oo2 Maya 1 203 | 203 Xerox 203 203-0001 002 MW
C,P,Ph,5(4) | o002 Maya 1 203 | 203 Xerox 203 203-0002 002 MW

C,P,Ph,5(-) | 004 Carmen 10 205 | 205 MGM 205 205-0001 004 MWF
P,Ph(-) 601 AMCO 601 601-0001
Ph(-) 701 701-001

S(0) 005 TWF

Figure 9: Data Associations for a Sufficient Illustration

for each target attribute B we ensure there is an example
that creates a tuple with a non-null value on B (if such an
example exists). Second, we want the user to understand
how complete the mapping is, that is, whether all the target
tuples created will have a non-null values for a particular
attribute. Third, we want the user to understand the prop-
erties of the source columns, which have an impact on the
behavior of the value correspondence. For instance, we want
the user to understand how a value correspondence behaves
when one or more of its source columns are null.

DEFINITION 4.5. Let I be a set of examples of mapping
M = (G,V,Cs,Cr). Then I is a sufficient illustration
of the value correspondences V if for each induced con-
nected subgraph J = (N, E;) of G and for each target at-
tribute B:

e if there exists a positive example (d, t), where coverage(d)
Ny and where t[{B] # null, then I contains such an example;
e if there exists a positive example (d, t), where coverage(d) =
Ny and where t{B] = null, then I contains such an example.

Sufficient Illustration of Mapping
Combining these definitions, we obtain a sufficient illustra-
tion for a mapping.

DEFINITION 4.6. Let I be a set of examples of mapping
M = (G,V,Cs,Cr). Then I is a sufficient illustration
of M if it is a sufficient tllustration of G, V and the filters
Cs and Cr.

4.3 lllustrationswith Focus

Sufficiency is a way of ensuring all aspects of a mapping
are illustrated. In addition, we permit a user to select val-
ues they understand and use the examples induced by these
values. The intuition is that a user may be familiar with
specific data values (for example, a user may know a spe-
cific child Maya and know how data related to Maya should
appear in the target). We want to take maximal advantage
of such values in our illustrations.

DEFINITION 4.7. Let I be a set of examples of mapping
M = (G,V,Cs,St), where G = (N,E). Let F € N be a
distinguished relation called the focus relation with scheme
Sr. Let f C F be a distinguished set of tuples of F' called
the focus tuples. Then I is focussed on f if, for every
data association d € D(G) where s, (d) € f, the resulting
example (d,t) is in I.

Intuitively, an illustration is focussed on f if all data asso-
ciations involving tuples of f are included in the illustration.

ExaMpPLE 4.8. The illustration shown in Figure 9 is fo-
cussed on Children, with Children tuples with ID values 001,

002, 004, and 009, as the focus tuples. All data associations
from Figure 8 that involve these children are included in the
tlustration. This illustration is not focussed on the Parents
tuple identified by ID 205, since the data association shown
in Row 3 of Figure 8, which involves Parents “205”, is not
included in this idlustration. This illustration does not pro-
vide a complete picture of the behavior of Parents 205 under
the mapping. However, this illustration allows the user to
learn everything about the children mentioned.

Given a mapping, Clio is able to build a sufficient illustra-
tion that provides an entry point into the data source. We
make use of evaluation and optimization techniques for the
minimal union operator to efficiently compute D(G) [5] and
to efficiently select a minimal sufficient illustration. From
this starting point, a user may select subsets of the illustra-
tion or subsets of the original source relations to focus the
illustration on specific data of interest.

5. MAPPINGSOPERATORS

[ustrations are designed to help a user understand map-
pings, understand differences between different mappings,
and identify shortcomings or flaws in a mapping. The next
step is to permit a user to act on the knowledge gained
through illustrations to extend or refine a mapping. We do
this by providing a suite of operators for manipulating map-
pings. Due to space limits, we are not able to describe all
the operators here. Instead, we describe a few of our op-
erators concentrating on how the operators permit users to
easily and effectively make use of the sophisticated query
reasoning and query management knowledge encapsulated
within our tool.

After examining an illustration of a mapping, a user may
invoke a mapping modification operator. The result of the
operator is a new mapping or a set of new alternative map-
pings. Each new mapping is illustrated by a set of examples
that are derived naturally from the current examples. Given
the incremental nature of this process and given that our
goal is to support the creation of complex mappings, it is
important that the invocation of these operators be painless
for the user and that she be able to quickly discern their
results.

The operators can be grouped by their effect on the map-
ping. First, correspondence operators permit a user to change
the value correspondences. In Section 2, we gave an example
of a user adding a new value correspondence to a mapping
(the correspondence v3 of Figure 2). In response to this op-
erator, Clio determined a set of alternative mappings (rep-
resented using possibly different query graphs) and helped
the user decide among them using illustrations. Second,
data trimming operators modify the source and target fil-



ters of a mapping. Data trimming operators do not change
the query graph of a mapping, but rather change the set
of source and target tuples included in the mapping. Trim-
ming operators are illustrated using positive and negative
examples so a user can see the effect of the different filters.
Finally, we provide a set of data linking operators, which di-
rectly change the query graph of the mapping. We focus on
two specific data linking operators to explain our approach.
Additional operators are describe elsewhere [17].

Data linking operators allow the users to extend a query
graph. Using these operators, a user can incrementally build
potentially complex mappings. However, the user does not
need to undertake the daunting task of specifying the struc-
ture of the new query graph or how the current graph should
be changed. Rather, the user may invoke these operators
using data by indicating what source data is missing from
the current illustration. We describe here two data linking
operators, data walk and data chase. In a data walk, the
user knows where the missing data resides in the source or
more specifically what source relation(s) contain this data.
Using this information, Clio infers possible ways of augment-
ing the query graph to include the new data and illustrates
each new mapping alternative. In a data chase, the user
does not know where the missing data resides. The chase
permits her to explore the source data incrementally to lo-
cate the desired data. This is done by exploiting data values
included in the data associations in the current illustration.
These values are “chased” through the source database to
discover new ways of linking the illustration data with other
data values until the desired data is found. For both opera-
tors, Clio provides the complex query management required
to create the new mapping and to illustrate it.

For both of these operators, there may be many ways to
extend the query graph. However, the majority of these
can quickly be dismissed by a user as semantically invalid,
leaving a few viable alternatives that the user can explore
further using other mapping or example operators.

5.1 DataWalk

A data walk makes use of Clio’s knowledge of the source
schema (which is gathered from schema and constraint def-
initions and from mining the source data, views, stored
queries and metadata). Using this knowledge, Clio deduces
a set of possible ways of joining relations each specified by
a query graph [9]. The specific techniques used are not rel-
evant to the current discussion. In general, however, Clio
has knowledge of a (possibly empty) set of potential query
graphs for joining any two source relations.

To define the walk operator, we first define a walk. Given
a query graph G(N, E), a walk from node @ of G, to a re-
lation R ¢ N, is a path from @ to R, as shown in Figure
10. There maybe many such paths. Formally, let walks(G
(N, E), @, R)be the set of all query graphs G'(N', E') con-
ceivable by Clio’s inference engine that satisfy the following
conditions.

o G'is a path between Q and R.

o If e € F' is an edge between two nodes in N, then
e € F and the label on this edge is the same in both
G and G'.

Within the context of our running example, let G1 be a
query graph as shown in Figure 11. Then walks(G1, Chil-
dren, PhoneDir) may include the graphs shown in Figure 11

(a). Note that if a potential path would violate the second
condition above, Clio will introduce a new copy of a relation
to create a valid extension. For instance, G2’ in Figure 11
is created in such a way.

Figure 10: Extensions of a Query Graph
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Figure 11: Data Walks

The data walk operator extends a mapping with data
walks. Let M =< G(N,E),V,Cs,Cr > be a mapping.
Let @ € N be the start relation (which may be chosen by
a user or chosen by Clio). Let R ¢ N be the end relation.
The result of the operator DataWalk(M, Q, R) is a set of
new mappings, one for each extension G' € walks(G, Q, R).
Fach new mapping is defined as M. =< G.,V,Cs,Cr >
where G, = G UG’ (the union of a graph is defined in
the normal way as the union of the nodes and union of the
edges). Notice that G is an induced, connected subgraph of
Ge.

EXAMPLE 5.1. Suppose we begin with a mapping whose
query graph is G1 (Figure 11). Now the user wants to intro-
duce relation PhoneDir into the mapping, since that is where
she can find phone numbers. The user may not know how
PhoneDir can be incorporated into G1. Hence, she requests
a data walk operation, DataWalk(G1, Children, PhoneDir).
Clio then produces a set of alternative query graphs, depicted
as G2-G4 in Figure 11. Notice that G2 is obtained by merg-
ing G1 with G2°, shown in the same figure. Similarly, G3
and G4 are obtained by merging G1 with G3’ and G4’, re-
spectively. Fach represents a different way of associating
children with phone numbers.

5.2 DataChase

The data chase operator also allows the user to extend the
query graph of the mapping. However, the chase is designed
for cases in which the user may not know which relation(s)
she wishes to include in the extended query graph. In a
chase, the user selects a source attribute value in the current
illustration and asks to be shown how this specific value can
be used to extend the mapping. For the chase, Clio identifies



all occurrences of the value within the data source. For each
occurrence, an extended mapping is formed and illustrated
to the user.

Let M =< G,V,Cs,Cr > be a mapping with illustration
I. Let v be a value of attribute Q[A] where Q is one of the
relations referenced by a node in G and v is in /. For each
relation R that is not referenced by a node in M, where
v € R[B], the mapping M is extended to a new mapping
chase(M) =< G',V,Cs,Cr >. The new query graph is
G' = (N',E') where N' = N U{R}, e = (@, R) with label
Q[A] = R[B] and E' = E U {e}.

A data chase provides the user with a set of alternative
scenarios for extending the current mapping with one outer
equijoin using a selected value. It is up to the user to decide
whether each extension is meaningful in the context of the
current mapping. Note that chase is not targeted, that is,
the user is not asking for suggestions about how to best ex-
tend the mapping to cover a particular relation. Rather, Clio
helps the user in experimenting with new data connections.
Usually, the data chase operator is used in combination with
data walks to combine the user’s understanding of the data
with that of Clio’s.

EXAMPLE 5.2. Assume that we start with a mapping whose
query graph G1 is shown in Figure 12, and we chase value
“0027 of Children.ID. The chase may produce several op-
tions based on where in the database the value of 002 is
found. The user reviews these options and selects one. In
our example from Section 2, the user chose G4.

Children  Children Children Children
Children.ID p hildren.ID
i i . Children.ID ildren.
Children.mid = <XmasBox.give —XmasBox.receive ... =SBPS.ID
Parents.ID
Parents Parents
Parents XmasBox XmasBox ~ Parents”  sppg
G1 G2 G3 G4

Figure 12: Data Chase

5.3 Continuous Evolution of Illustrations

As a mapping evolves, its illustration must also evolve.
We evolve the illustrations in such a way that the user is not
required to learn a new set of data in order to understand
the evolution. The data in the old illustration, which is
familiar to the user, should be retained as much as possible
in the new illustration. We refer to this requirement as the
continuity requirement of illustration evolution.

Intuitively, instead of selecting a completely new set of ex-
amples, a continuous evolution extends each example in the
current illustration. If the new illustration is not sufficient,
the user may request new examples be added to preserve suf-
ficiency. But the role of these new examples in understand-
ing the mapping is made clear and the user does not lose her
place when existing examples disappear or mutate beyond
recognition. The formal definition of continuous evolution,
and a proof that our mapping representation and operators
support continuous evolution are included elsewhere [17].

6. USING CLIO FOR LARGE MAPPINGS

In the preceding sections, we detailed our proposal for a
mapping creation tool. We supported our description with
examples based on a simple source and target schema, with a

fairly simple mapping between them. Simple examples make
it easy to understand the concepts described. To be useful,
however, Clio must be capable of handling real problems of
much greater scale and complexity. In this section, we show
how Clio helps users with these more realistic scenarios.

There are three types of complexity that we consider. As
should be clear by now, during the mapping process we must
manage and manipulate multiple (possible) mappings while
the user explores the data, creates new correspondences and
extends the query graph. We describe the transformation
framework that Clio provides to support the mapping pro-
cess in Section 6.1. The more complex the relationship be-
tween source and target, the more (possible) mappings we
must handle. In Section 6.2, we illustrate how a complex
transformation is created, and show how Clio can reuse por-
tions of mappings to greatly ease the user’s task as the num-
ber of mappings needed for a particular target mapping be-
comes more numerous and complex. Large schemas are a
second source of complexity. Finally, users often contend
with large volumes of data which need to be transformed. If
a user is unfamiliar with the data source, the amount of data
itself may be an obstacle to understanding how to map it. In
a companion paper, we discuss how Clio helps users to deal
with both large source and large target schemas [17]. We
also discuss how the example mechanism described above
helps manage the complexity of large data volumes.

6.1 Clio’'sMapping Framework

Clio provides users with a target viewer, a source schema
viewer, and a set of workspaces, each associated with a single
mapping alternative. At any point in time, one workspace is
active. The target viewer always shows the contents of the
target as they would be under the mapping associated with
the current active workspace (we will refer to this mapping
as the active mapping to be concise). In other words, the
target viewer provides a “What You See Is What You Get”
flavor to the mapping process [13].

The schema viewer serves two purposes. It serves as a
palette from which users can choose the relations with which
they want to work or explicitly select an edge to follow (one
way to request a data walk). It also provides a visualization
of the query graph being constructed (super-imposed on the
schema graph). This visualization depends, like the contents
of the target viewer, on the current active mapping.

Each workspace displays the set of examples, F, that il-
lustrates the associated mapping. As the user works with
these examples, modifying the query graph, the examples
displayed change as described in Section 5 above. The asso-
ciated mapping also changes, of course, and these changes
are reflected both in the query graph visualization, and in
the target viewer. When a data walk or data chase results
in several alternative mappings, new workspaces are created
to represent those alternatives (one of which is chosen as
the new active workspace), and the old workspaces are dis-
carded. Alternatively, the old workspaces could be “remem-
bered” to make backing out changes more efficient. When
multiple mappings are possible, Clio tries to order them from
most likely to least likely, using simple heuristics related to
path length, least perturbation to the current active map-
ping, etc. A user can rotate through workspaces or explicitly
select a workspace as active in order to try out the effects of
different mappings. If the user wishes to eliminate an alter-
native, she can delete the associated workspace; or she can



Children(C) Parcnts(P) PhoneDir(Ph) SBPS(S) XmasBox(X)
coverage 1D name age  mid D affiliation 1D number 1D time give  receive
C,P,Ph,X(+) | ool Kyle 2 201 201 Safeway 201 201-0001 001 003
C,S(¥) | 009 Ben 6 401 009 TWE
C,P,Ph,S X(4) | 002 Maya 1 208 | 203 Xerox 203 203-0001 002 MW 00 2 004
C,P,Ph,S X(4) | 002 Maya 1 203 | 203 Xerox 203 203-0002 002 MW 002 004
C,P,Ph,S,X(-) | 004 Carmen 10 205 | 205 MGM 205 205-0001 004 MWF | 00 4 006
P,Ph(-) 601 AMCO 601 601-0001
Ph(-) 701 701-001
S(-) 005 TWF
X(-) 006 001

Figure 13: Continuous Illustration: Extension

confirm an alternative as the correct mapping (so far), and
all alternative workspaces will be deleted.

Clio ensures that the active mapping, the query graph vi-
sualization, and the mapping examples in the active work-
space are all synchronized: changes to any one of them are
automatically reflected in the others. In addition, the data
displayed in the target viewer is always that which would be
produced by the active mapping.® In this way, we empower
users to explore the source data and its linkage through both
the data and the schema at the same time, seamlessly. Fur-
ther, and perhaps more importantly, Clio helps the user un-
derstand the results of the mappings being formed and al-
lows the user to verify that the transformations that result
are what she intended.

6.2 Complex Mappings

Since each mapping produces a subset of the tuples of
a single target mapping, many mappings may need to be
created to map an entire target schema. Often, these map-
pings will have a great deal of overlap, differring only in a
few correspondences, or a small portion of the query graph.
Re-creating the bulk of each mapping from scratch would
be tedious, to say the least. Fortunately, the decisions made
in creating one mapping can be stored and made available
to the user for use in creating additional mappings. This
greatly reduces the burden and overhead on the user.

ExXaAMPLE 6.1. We return to the user trying to “fill in”
Kids.contactPh. The data walk of Section 5 generated the
possible query graphs of Figure 11. Fach, of course, is the
basis for a mapping and an illustration of that mapping.
Suppose the user likes the mapping associated with query
graph G2, but notices that in cases where mid is null (child
has no mother), there is no contactPh in the target. She
might accept that mapping, adding the filter “mid not null”.
However, the result is thalt motherless children disappear
from the target. Realizing that when there is no mother,
the father’s phone should be used, she also accepts the map-
ping associated with query graph G3, adding the filter “mid
is null”.

In the example, the user’s task is made easier because
Clio automatically computes both possible mappings, and
the user can accept one or several, adding filters as needed.
It is worth noting that both mappings inherit all the cor-
respondences and filters of the mapping that existed before
the data walk. Such automatic creation of mappings also

5The user can perform some simple transformations on the target as
well, such as applying a function to a target attribute. However, to
avoid the ambiguity of general target transformations (the well-known
view update problem), we restrict most transformations to the source
data and resolve ambiguities using source examples.

occurs when the user adds a new correspondence that forces
Clio to generate an additional mapping to help complete a
target, for example, when the user specifies a second corre-
spondence for the same field in the target. Clio always tries
to reuse as much of an existing mapping as possible.

EXAMPLE 6.2. Suppose that Kids has a column Arrival-
Time that tells when the child arrives home. The value for
this field comes from the bus schedule table, B, if the child
takes a bus, else it is computed from the class schedules table,
CS (as a function of the time the child’s last class ends). The
user might first create a correspondence from B to Arrival-
Time, causing Clio to find a join condition (on ID). When
the user then creates a correspondence from CS to Arrival-
Time, Clio detects that another mapping is needed (because
this is a different way to compute ArrivalTime). In creating
the new mapping, Clio copies the correspondences and filters
for already mapped fields (other than ArrivalTime, i.e., ID,
name, affiliation, BusSchedule and FamilyIncome), as well
as the query graph as it was prior to the addition of the first
correspondence for ArrivalTime. Thus the user does not
have to re-enter all this information for the new mapping.

Clio’s rich framework supports the user in specifying com-
plex target mappings. Our flexible, powerful mapping rep-
resentation lends itself to this form of incremental modifica-
tion. The user can focus on a small portion of a mapping
at a time, building each mapping incrementally. Further,
when multiple mappings are necessary to create the full tar-
get mapping, Clio can transfer correspondences and query
graphs from earlier mappings as appropriate, allowing the
user to focus on what is new, and alleviating the task of
repetitive specification of common transformations.

7. RELATED WORK
Ad Hoc Query Tools and QBE Paradigms Ad hoc

query tools, including Esperant® and Impromptu’, focus
on helping users to access data using natural language or
through a point-and-click GUI. These requests are processed
by a meta-data layer that translates them into SQL queries.
In these systems, the user does not have to know SQL, un-
derstand the schema, or know how attributes are decom-
posed among relations. The translation process is hard-
coded using (often procedural) transformation programs.
These programs are provided by an (expert) data admin-
istrator with complete knowledge of the data. Most of these
tools are tightly integrated with a report generating facil-
ity so they can readily display the query result. However,

Swww.visionyze.com/products/technology/esperant
"www . cognos.com/impromptu



the tools do not allow the users to verify or rectify queries
by working with the displayed data. Visual query builders,
such as QBE Query Builder®, are also relevant. These tools
focus on helping users compose SQL queries faster and with
fewer errors. Clio differs from these tools in that we focus
on understanding the data source using data, and we allow
users to refine their queries using data examples.

Universal Relation Assumption In Clio, we begin with
a set of value correspondences that mention attributes and
how they should appear in the result of a query. From
this, we are trying to deduce a full query, including the
join conditions required to connect the relations involved
in the query. This statement of our goals appears very sim-
ilar to the goals of Universal Relation systems [3, 8, 16]. In
a Universal Relation interface, the user mentions only at-
tributes, and the system, using reasoning about dependen-
cies, translates this query over the “universal relation” into
a query on the actual logical database structure. Indeed,
the goal of such systems is to provide logical data indepen-
dence so the user does not have to understand the table
structure of the database. However, the different context of
these two problems, schema mapping between heterogeneous
structures and querying of a (homogeneous) database, ne-
cessitate different solutions. In Universal Relation systems,
the goal is to both provide a translation from the universal
relation and to characterize when such a translation is well-
behaved, that is, when this translation has a well-defined,
meaningful semantics. In schema mapping, the goal is to
provide possible translations regardless of the qualities (or
idiosyncrasies) of the underlying schema. We must be able
to handle all schemas and this requirement fundamentally
changes the scope of the problem. However, much of the
work on universal relations can be used to suggest possible
mappings and hence to provide a starting point for our map-
ping creation algorithms [9]. In this paper, we extended our
mapping creation algorithms to present alternatives to the
user, something that is not considered in Universal Relation

Systems such as System /U [8] or PIQUE [15].

8. CONCLUSIONS

We have presented a new framework that uses examples
drawn from source data to illustrate complex schema map-
pings. We have provided formal definitions of mappings,
mapping examples, and mapping operators, and have shown
how they can be used to help a user understand the data
and develop a mapping. Our approach allows the user to
discriminate subtle differences between mappings, while re-
quiring no special data management expertise or even any
deep knowledge of the source data. Since Clio understands
the complexities of mappings, and enumerates and manages
multiple alternatives, the user is able to consider and quickly
choose among a broad space of possible mappings to find
the one that is best for her application. We believe that our
work represents a paradigm shift for schema mapping, from
query-centric to data-driven.
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